报告题目: On Chen's conjecture for biharmonic hypersurfaces
报告时间: 2023-04-26 15:00——2023-04-26 17:30
报告人: 洪敏纯 教授
报告地点: 劝学楼408
主办单位: 数据科学与人工智能学院 东北财经大学应用数学研究中心
【报告人简介】
洪敏纯,澳大利亚昆士兰大学数学系教授,国际著名几何分析,偏微分方程专家。洪敏纯教授八十年代博士毕业于浙江大学,曾获第一届霍英东青年科学家奖,教育部自然科学一等奖。他在微分几何与非线性分析方面,特别在调和映射、Yang-Mills场、液晶模型偏微分方程等领域做出了杰出贡献,在国际上享有盛誉。在Adv. Math., Math.Ann., J. Funct. Anal.等国际顶尖学术期刊发表论文五十多篇。
【报告摘要】
A longstanding conjecture on biharmonic submanifolds, proposed by Chen in 1991, is that any biharmonic submanifold in a Euclidean space is minimal. In the case of a hypersurface $M^n$ in $mathbb R^{n+1}$, Chen's conjecture was settled in the case of $n=2$ by Chen and Jiang around 1987 independently. Hasanis and Vlachos in 1995 settled Chen's conjecture for $n=3$. In 2021,we settled Chen's conjecture for hypersurfaces in $mathbb R^{5}$ for $n=4$. More recently, we find new techniques to settle Chen's conjecture on biharmonic hypersurfaces in $Bbb R^6$ and the BMO conjecture on biharmonic hypersurfaces in $mathbb S^6$.
撰稿:魏斯宁 审核:富宇 单位:数据科学与人工智能学院